Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The United States (U.S.) West Coast power system is strongly influenced by variability and extremes in air temperatures (which drive electricity demand) and streamflows (which control hydropower availability). As hydroclimate changes across the West Coast, a combination of forces may work in tandem to make its bulk power system more vulnerable to physical reliability issues and market price shocks. In particular, a warmer climate is expected to increase summer cooling (electricity) demands and shift the average timing of peak streamflow (hydropower production) away from summer to the spring and winter, depriving power systems of hydropower when it is needed the most. Here, we investigate how climate change could alter interregional electricity market dynamics on the West Coast, including the potential for hydroclimatic changes in one region (e.g., Pacific Northwest (PNW)) to “spill over” and cause price and reliability risks in another (e.g., California). We find that the most salient hydroclimatic risks for the PNW power system are changes in streamflow, while risks for the California system are driven primarily by changes in summer air temperatures, especially extreme heat events that increase peak system demand. Altered timing and amounts of hydropower production in the PNW do alter summer power deliveries into California but show relatively modest potential to impact prices and reliability there. Instead, our results suggest future extreme heat in California could exert a stronger influence on prices and reliability in the PNW, especially if California continues to rely on its northern neighbor for imported power to meet higher summer demands.more » « less
-
Abstract Hydrologic variability poses an important source of financial risk for hydropower‐reliant electric utilities, particularly in snow‐dominated regions. Drought‐related reductions in hydropower production can lead to decreased electricity sales or increased procurement costs to meet firm contractual obligations. This research contributes a methodology for characterizing the trade‐offs between cash flows and debt burden for alternative financial risk management portfolios, and applies it to a hydropower producer in the Sierra Nevada mountains (San Francisco Public Utilities Commission). A newly designed financial contract, based on a snow water equivalent depth (SWE) index, provides payouts to hydropower producers in dry years in return for the producers making payments in wet years. This contract, called a capped contract for differences (CFD), is found to significantly reduce cash flow volatility and is considered within a broader risk management portfolio that also includes reserve funds and debt issuance. Our results show that solutions relying primarily on a reserve fund can manage risk at low cost but may require a utility to take on significant debt during severe droughts. More risk‐averse utilities with less access to debt should combine a reserve fund with the proposed CFD instrument in order to better manage the financial losses associated with extreme droughts. Our results show that the optimal risk management strategies and resulting outcomes are strongly influenced by the utility's fixed cost burden and by CFD pricing, while interest rates are found to be less important. These results are broadly transferable to hydropower systems in snow‐dominated regions facing significant revenue volatility.more » « less
An official website of the United States government
